AnimationPak: Packing Elements with Scripted Animations

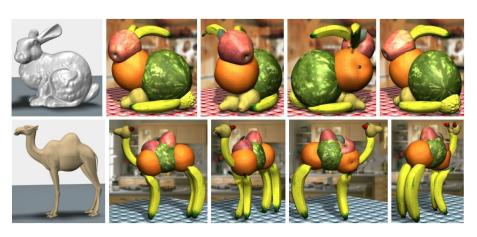
Reza Adhitya Saputra Craig S. Kaplan Paul Asente

Graphics Interface 2020

ABSTRACT

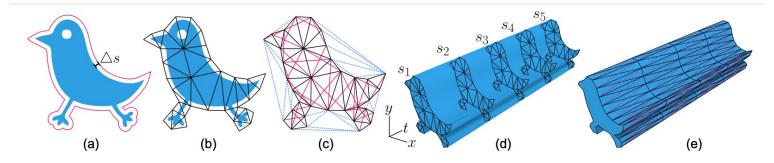
2020 UN BIODIVERSITY CONFERENC

COP15 - CP/MOP10 - NP/MOP4


Ecological Civilization-Building a Shared Future for All Life on Earth

KUNMING · CHINA

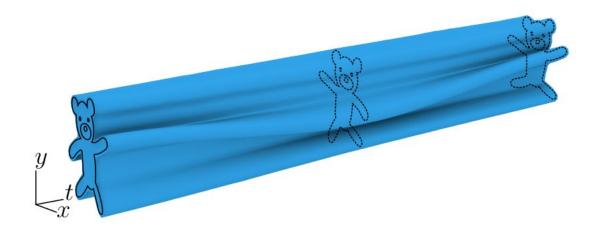
RELATED WORK

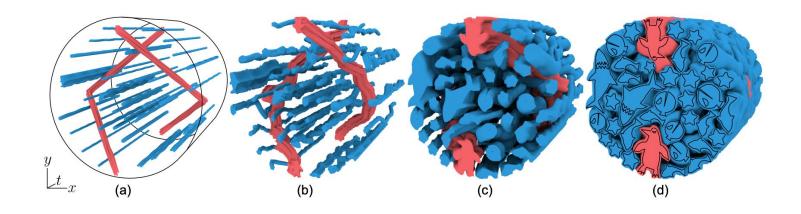

ANIMATED ELEMENTS

- The input to AnimationPak is a library of animated elements and a fixed container shape.
- AnimationPak currently supports two kinds of animation: the user can animate the shape of each individual element and can also give elements trajectories that animate their position within the container.

https://www.youtube.com/watch?v=Y60xcp-EZOw

ANIMATED ELEMENTS


• Spacetime Extrusion


- we first offset the shape's paths by a distance Δs , leaving the shape surrounded by a channel of negative space.
- Delaunay triangulation
- adding extra edges to prevent folding or self-overlaps during simulation
- To extend the element into the time dimension, we now position evenly-spaced copies of the slice along the time axis.
- To complete the construction of a spacetime element without animation, we stitch the slices together into a single 3D object

ANIMATED ELEMENTS

- Animation
 - The results in this paper all use fewer than ten input elements

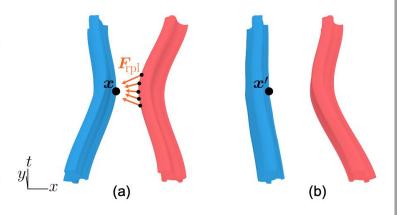
INITIAL CONFIGURATION

Repulsion Forces

boundary as:

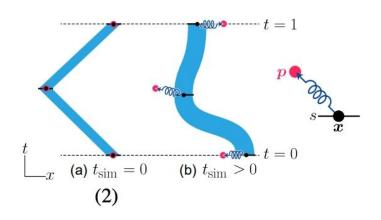
$$\mathbf{F}_{\text{rpl}} = k_{\text{rpl}} \sum_{i=1}^{n} \frac{\mathbf{u}}{\|\mathbf{u}\|} \frac{1}{\epsilon + \|\mathbf{u}\|^2}$$
 (1)

where


 $k_{\rm rpl}$ is the relative strength of $F_{\rm rpl}$. We set $k_{\rm rpl}=10$;

n is the number of nearest points to x;

 x_i is the *i*-th closest point on the neighboring element surfaces;


$$\boldsymbol{u} = \boldsymbol{x} - \boldsymbol{x_i}$$
; and

 ϵ is a *soft parameter* to avoid instability when $\| {m u} \|$ is small. We set $\epsilon = 1$.

Edge Forces

$$oldsymbol{F}_{ ext{edg}} = k_{ ext{edg}} rac{oldsymbol{u}}{\|oldsymbol{u}\|} s \left(\|oldsymbol{u}\| - \ell
ight)^2$$

where

 $k_{\rm edg}$ is is the relative strength of $F_{\rm edg}$. Different classes of spring will have different $k_{\rm edg}$ values;

 $u = x_b - x_a;$

 ℓ is the rest length of the spring; and

s is +1 or -1, according to whether $(\|u\| - \ell)$ is positive or negative.

Overlap forces

$$\mathbf{F}_{\text{ovr}} = k_{\text{ovr}} \sum_{i=1}^{n} (\mathbf{p_i} - \mathbf{x})$$
 (3)

where

 k_{ovr} is the relative strength of F_{ovr} . We set $k_{\text{ovr}} = 5$; n is the number of slice triangles that have x as a vertex; and p_i is the centroid of the i-th slice triangle incident on x.

Boundary forces

$$\boldsymbol{F}_{\mathrm{bdr}} = k_{\mathrm{bdr}}(\boldsymbol{p_b} - \boldsymbol{x}) \tag{4}$$

where

 $k_{\rm bdr}$ is the relative strength of $F_{\rm bdr}$. We set $k_{\rm bdr} = 5$; and p_b is the closest point on the target container to x.

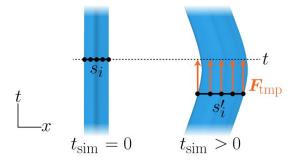
Torsional forces

$$\mathbf{F}_{\text{tor}} = \begin{cases} k_{\text{tor}} \mathbf{u}^{\perp}, & \text{if } \theta > 0 \\ -k_{\text{tor}} \mathbf{u}^{\perp}, & \text{if } \theta < 0 \end{cases}$$
 (5)

where

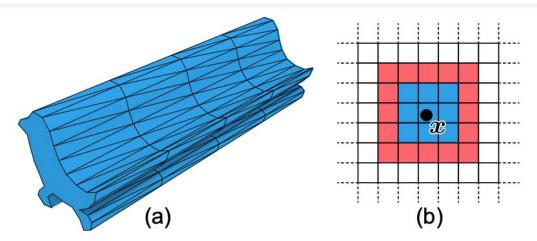
 $k_{\rm tor}$ is the relative strength of $F_{\rm tor}$. We set $k_{\rm tor}=0.1$;

 θ is the signed angle between u_r and u; and


 u^{\perp} is a unit vector rotated 90° counterclockwise relative to u.

Temporal forces

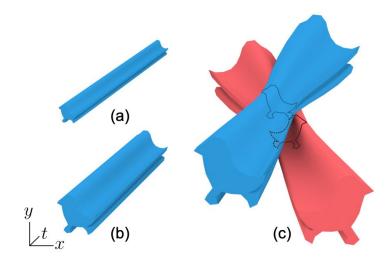
$$\boldsymbol{F}_{\rm tmp} = k_{\rm tmp} \boldsymbol{u}^t (t - t') \tag{6}$$


where

 $k_{\rm tmp}$ is the relative strength of $F_{\rm tmp}$. We set $k_{\rm tmp}=1$; t is the initial time of the slice to which the vertex belongs; t' is the current time value of the vertex; and $\boldsymbol{u}^t=(0,0,1)$.

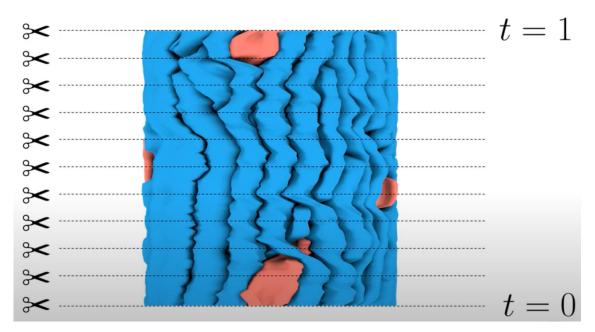

$$F_{\text{total}} = F_{\text{rpl}} + F_{\text{edg}} + F_{\text{bdr}} + F_{\text{ovr}} + F_{\text{tor}} + F_{\text{tmp}}$$
 (7)

Spatial Queries

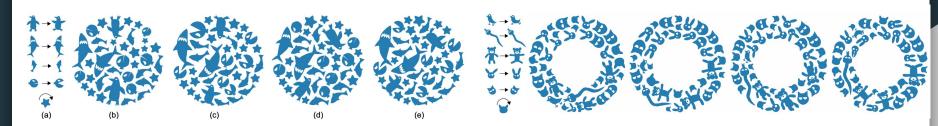


Slice Constraints

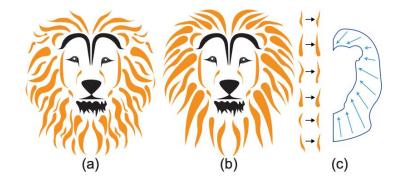
- End-to-end constraint: A spacetime element must be present for the full length of the animation from t = 0 to t = 1.(Fig. a).
- Simultaneity constraint: we compute the average t value of all vertices belonging to each slice other than the first and last slices, and snap all the slice's vertices to that t value (Fig. b).
- Loop constraint: (c)(d)



• Element Growth and Stopping Criteria



RENDERING


• For our results, we typically render 500-frame animations.

IMPLEMENTATION AND RESULTS

Packing	Elements	Vertices	Springs	Triangles	Time
Aquatic animals (Fig. 1)	37	97,800	623,634	106,000	01:06:35
Snake and birb (Fig. 11)	37	58,700	370,571	58,700	01:01:32
Penguin to giraffe (Fig. 12)	33	124,300	824,164	143,000	01:19:50
Heart stars (Fig. 13c)	26	85,200	598,218	858,00	00:23:08
Animals (Fig. 15b)	34	69,600	444,337	69,800	01:00:19
Lion (Fig. 14b)	16	39,400	236,086	41,800	00:41:56

